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Abstract

This paper describes various numerical and parallel methods used at Argonne National
Laboratory during the past five years to develop scalable software packages for beam dy-
namics simulations. It is based on the paper “Developing petascalable algorithms for beam
dynamics simulations,” which appeared in the proceedings of the first International Par-
ticle Accelerator Conference in 2010 [Jin Xu et al. Proceedings of IPAC10, Kyoto, Japan,
May 23-28 (2010)]. Our focus here is on the standard particle-in-cell (PIC) method, direct
Vlasov solvers, and scalable Poisson solvers. Among these methods the most challenging
are scalable Poisson solvers, designed in three dimensions to account for space charge ef-
fects. Several approaches have been used to solve Poisson’s equation efficiently in different
situations. High-order numerical methods have been adopted to increase the accuracy. Do-
main decomposition methods have been used for parallelizing the solvers, and good scaling
has been achieved. Preliminary results for the direct Vlasov solvers have been obtained for
up to four dimensions. The parallel beam dynamics code PTRACK, which uses the PIC
method to solve Poisson’s equation, has been used as a workhorse for end-to-end simula-
tions and large-scale design optimization for linear accelerators. We have successfully run
the parallel methods on tens of thousands of processors of the IBM Blue Gene/P system at
the Argonne Leadership Computing Facility, which provides an excellent environment for
conducting large-scale beam dynamics simulations.
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1 Introduction

BDS plays a significant role in accelerator modeling, for both the design and
the operation phases of an accelerator. Computational beam dynamics has become
more powerful with the development of supercomputers capable of simulating more
complex effects and phenomena in beam physics. As the computing era enters the
petascale level, more accurate accelerator simulations can be conducted. To fully
exploit this computing power, however, scientists need more efficient numerical and
parallel methods. Charged particle beams are at the core of accelerator technology.
Since a charged beam is a kind of plasma, most of the methods used for plasma
simulations could be adopted and used for charged beam simulations. We divide
the methods for simulating plasma into three categories: microscopic models, kinetic
models, and fluid models.

In the microscopic model, each charged particle is described by six variables
(x, y, z, vx, vy, vz). Therefore, for N particles, there are 6N variables in total. Since
every two particles have a mutual force interaction, this leads to a group of 6N
equations each of which has 6N variables. Solving the beam dynamics equation in 6N
dimensions exceeds the capability of current supercomputers for large N.

The fluid model is the simplest because it treats the plasma as a conducting fluid
with electromagnetic forces exerted on it. This model is used for solving magnetohy-
drodynamics equations in 3D (x, y, z); MHD techniques solve for average quantities,
such as density and charge. The fluid model has been used successfully to describe
a continuous flow of fluid. Since charged beams are often accelerated and focused in
bunches, the model is not suitable for charged beam simulations.

Between these two models is the kinetic model, which is used in most current
beam dynamics simulations. This model obtains the charge density function by solv-
ing the Boltzmann or Vlasov equation in six dimensions (x, y, z, vx, vy, vz). The Vlasov
equation describes the evolution of a system of particles under the effects of self-
consistent electromagnetic fields. The Vlasov equation can be solved in two ways.
The most common way is the particle-in-cell (PIC) method, which uses the motion of
the particles along the characteristics of the Vlasov equation using an Euler-Lagrange
approach. The PIC method is fast and easy to implement; and, with the arrival of
petascale computing, one-to-one simulation can be realized for low-density beams.
But for more intensive beams, the PIC method still uses macroparticles, making it
difficult to capture detailed beam structure. Furthermore, noise is associated with
the finite number of particles in the simulations.

Another way to solve the kinetic model is to solve the Vlasov equation directly.
This approach requires solving in 2 × nD (n is the dimension of the physical space).
Thus, for example, in order to simulate beams in three dimensions, the Vlasov equa-
tion must be solved in six dimensions. Clearly, petascale computing is required, and
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petascale algorithms are critical to a successful solution.
During the past five years, Argonne National Laboratory has developed efficient

numerical methods to meet these demands. This paper summarizes our efforts, focus-
ing on PIC methods, direct Vlasov solvers, and Poisson solvers; their implementation
in petascale software; and their application in beam dynamics simulations of linear
accelerators on the IBM Blue Gene/P system at the Argonne Leadership Computing
Facility. More specifically, the beam dynamics simulation (BDS) here refers to the
simulation of high-intensity protons and heavy-ion beams in linear accelerators with
space charge effects taken into consideration. Various electromagnetic elements for
the acceleration, transport, deflection, and focusing of beams have been studied for
simulating the beam from end to end (i.e., from the ion source where the beam is
generated to the target where the accelerator ends). We note that this work is ongo-
ing and that other methods are under development. We direct the interested reader
to related papers for more detailed information [30,32–34].

The paper is organized as follows. The numerical methods are briefly explained
in Section 2 and the parallel methods in Section 3; comparisons and discussions of
these numerical methods are presented in Section 4. We draw our conclusions in
Section 5.

2 Numerical Methods

In this section, we present the numerical methods used for BDS. Since the PIC
method is the most widely used approach for simulating charged beams and plasma, it
is presented in the first subsection. Next, direct Vlasov methods are presented. Their
forms in 2D and 4D are introduced separately, and two schemes for time integration
of the Vlasov equation are also presented. Since the space charge effects are needed
for both the PIC and the direct Vlasov methods, the third subsection focuses on
numerical methods for solving the Poisson equation.

2.1 Particle-in-Cell Method

The PIC method was already in use as early as the 1950s, and the method gained
popularity for plasma simulation in the late 1950s and early 1960s through the work
of Dawson [10], Hockney and Eastwood [19], Birdsall and Langdon [4], and others.
In plasma physics applications, the method amounts to following the trajectories of
charged particles in self-consistent electromagnetic (or electrostatic) fields computed
on a fixed mesh. In this technique, particles are pushed by a particle mover, which
integrates the equation of motion; Maxwell’s equations determining the electric and
magnetic fields are calculated by a field solver. The charges on the grid are obtained
by distributing the charges of the charged particles on nearby grid nodes with suitable
weights.
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The PIC method is the most widely used approach in the kinetic model for BDS.
It uses macroparticles to represent the charged particles in the beam, integrating the
beam dynamics equations under external and internal forces. The external force usu-
ally comes from electromagnetic fields of accelerator components; the internal force
comes from the space charge effect, which is accounted for by solving the Poisson
equation on a fixed grid. Because of the relativistic effect, the beam dynamics equa-
tion should be solved in the appropriate coordinate system. Many software packages
are available, such as RAYTRACE, PARMILA, IMPACT, and TRACK. Our BDS
research is based on the beam dynamics code TRACK, developed in the Physics Di-
vision at Argonne National Laboratory over the past 10 years. The basic method is
presented below.

The transport of a charged particle is described by the equation of motion:

d~p

dt
= Q( ~E + ~v × ~B), (1)

where ~p is the particle momentum and Q is its charge; ~E = ~Eext+ ~Eint and ~B = ~Bext+
~Bint are the sums of external and internal electric and magnetic fields, respectively;
and ~v is the particle velocity. TRACK uses six independent variables for tracking the
phase-space coordinates of the particles, (x, x′ = dx/dz, y, y′ = dy/dz, β = v/c, φ),
where v =| ~v | and φ is the particle phase shift with respect to a reference particle.
Since the relativistic effect is being considered, the set of equations used for the
step-by-step integration routine is

dx

dz
= x′,

dy

dz
= y′,

dφ

dz
=

2πf0h

βc
(2)

dx′

dz
= χ

Q

A

h

βγ
[
h

βc
(Ex − x′Ez) + x′y′Bx − (1 + x′2)By + y′Bz] (3)

dy′

dz
= χ

Q

A

h

βγ
[
h

βc
(Ey − y′Ez) − x′y′Bx + (1 + y′2)Bx − x′Bz] (4)

dβ

dz
= χ

Q

A

h

βγ3c
(x′Ex + y′Ey + Ez), (5)

where γ = 1/
√

1 − β2; h = 1/
√

1 + x′2 + y′2; χ = 1/mac
2; A is the mass number;

ma is the atomic mass unit; and Ex, Ey, Ez, Bx, By, Bz are the components of electric
and magnetic fields. TRACK uses the fourth-order Runge-Kutta method to integrate
Equation (2); every time step is subdivided into four substeps. Currently, the external
electromagnetic fields are computed by using commercial software packages, such as
CST MWS, EMS, or ANSYS. (Several Poisson solvers also have been developed and
are described in the following sections.) The code TRACK supports the following
electromagnetic elements for acceleration, transport, and focusing of multicomponent
ion beams:
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• Any type of RF accelerating resonator with realistic 3D fields.
• Radio frequency quadrupoles.
• Solenoids with fringing fields.
• Bending magnets with fringing fields.
• Electrostatic and magnetic multipoles (quadrupoles, sextupoles, etc.) with fringing

fields.
• Multiharmonic bunchers.
• Axial-symmetric electrostatic lenses.
• Entrance and exit of a high-voltage deck.
• Accelerating tubes with DC distributed voltage.
• Transverse beam steering elements.
• Stripping foils or films (for the Facility for Rare Isotope Beams, not general yet).
• Horizontal and vertical jaw slits for beam collimation.
• Static ion-optics devices with both electric and magnetic realistic three-dimensional

fields.

More details can be found in [3,30]. The TRACK code has been used worldwide
since 2000 and now is being used as a workhorse for design and optimization at Ar-
gonne. More details can be found at the website http://www.phy.anl.gov/atlas/TRACK/,
including the executable, documentation, and examples, all of which can be down-
loaded without cost.

We point out that there exists another approach, different from ray-tracing codes,
that uses the matrix formalism for the design and study of beam-optics systems, for
example, TRANSPORT, TRACE3D, or GIOS. They are not included in this paper.

2.2 Direct Vlasov Method

The PIC method has some shortcomings, such as the noise associated with a
finite number of macroparticles and the difficulty in describing the beam tail and
eventual beam halo formation. Since PIC is a simplified method for solving the Vlasov
equation, scientists are interested in solving the Vlasov equation directly. The direct
Vlasov approach has the potential to compensate for the limitations of the PIC
method, as it uses the distribution function—a more convenient approach for better
description of beam structure including beam halo.

The direct Vlasov method solves the beam distribution function in the six-
dimensional phase space (x, y, z, vx, vy, vz). The evolution of the distribution function
of particles f(~x,~v, t) in the phase space (~x,~v) ∈ Rd × Rd, with d =1,2,3 and time t,
is given by the dimensionless Vlasov equation,

∂f(~x,~v, t)

∂t
+ ~v(~x, t) · ∇xf(~x,~v, t) + ~F (~x,~v, t) · ∇vf(~x,~v, t) = 0, (6)
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where the force field ~F (~x,~v, t) can be coupled to the distribution function f . Since
beams are accelerated by electromagnetic fields, the Vlasov equation usually needs
to be solved together with the Maxwell equations. If the external fields can be omit-
ted and only the internal field needs to be considered, the Vlasov-Maxwell system
becomes the Vlasov-Poisson system. The Poisson equation is solved with the macro-
scopic beam density ρ, which is obtained by integration of the charge distribution
function.

ρ(~x,~v, t) =
∫

Rd

f(~x,~v, t)dv (7)

The force field, which depends only on t and ~x, is obtained by the gradient of
the potential, which is determined by solving Poisson’s equation,

~F (~x,~v, t) = ~E(~x, t), ~E(~x, t) = −∇~xφ(~x, t), −∆~xφ(~x, t) = ρ(~x, t) − 1, (8)

where ~E is the electric field and φ the electric potential.

The challenge in solving the Vlasov equation is its high dimensionality. To ad-
dress this, we used for the time integration a time-splitting scheme proposed by
Cheng and Knorr [6]. Their method transforms the Vlasov equation from 2D to two
1D equations. Our work in this area is preliminary but encouraging; it is presented
briefly in Section 3. Details of these work can be found in [33,34]. In the following,
the forms of the Vlasov equation in 2D and 4D are explained separately.

2.2.1 Vlasov Equation in 1P1V Phase Space

In 1P1V phase space, the normalized Vlasov equation can be written as follows
[1].

∂f(x, v, t)

∂t
+ v(x, t)

∂f(x, v, t)

∂x
+ E(x, t)

∂f(x, v, t)

∂v
= 0 (9)

E(x, t) =−∂φ(x, t)

∂x
,−∆φ(x, t) =

∂E(x, t)

∂x
= ρ(x, t) − 1 (10)

ρ(x, t) =

∞
∫

−∞

f(x, v, t)dv (11)

The distribution function f(x, v, t) is expanded on a structured quadrilateral
grid, as shown on the right of Fig. 1. Modal bases, shown on the left of Fig. 1, have
been used. A semi-Lagrangian method, explained in Section 2.2.3, has been used in
the 2D plane. To increase the accuracy, we have adopted the algorithm proposed by
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Fig. 1. Modal bases on quadrilateral (left) and quadrilateral mesh in a box domain (right).

Sonnendrücker in [27]. Each time step has been subdivided into three substeps: the
first and the third substeps are in velocity space, and the second substep is in physical
space. The detailed procedure follows.
. . . . . .

Do istep=1,nstep:
- Compute jn = q

∫

fn(xn, vn)vndv;
- Compute Epred = En − jn∆t from Ampere’s law;
- Do until | En+1 − Epred |< ε

· Substep1: vn+1/2 = vn+1 − Epred(xn+1)∆t/2
· Substep2: xn = xn+1 − vn+1/2∆t;
· Substep3: vn = vn+1/2 − En(xn)∆t/2;
· Interpolate to compute charge density;
· Solve Poisson’s equation for En+1;
· Update new Epred = En+1.

- Enddo
Enddo

. . . . . .

Since the semi-Lagrangian method relies heavily on the accuracy of the interpo-
lation, using hp-FEM can easily achieve high order on each element by increasing the
polynomial order. During each time-step iteration, Poisson’s equation must be solved
on a structured grid. The method is explained in Section 2.3.3. Although the accuracy
can be high order in space, the current time integration scheme is only second order;
we anticipate the adoption of high-order methods to increase the order of accuracy
for time integration in the future. More details for solving the Vlasov equation in 2D
can be found in [33].

2.2.2 Vlasov Equation in 2P2V Phase-Space

Next, we introduce our work on solving the Vlasov equation in higher dimensions,
2P2V. In beam dynamics, a simplified model was developed in 2P2V [14] as a paraxial
model based on the following assumptions:
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• The beam is in a steady state: all particle coordinates derivatives with respect to
time vanish.

• The beam is sufficiently long so that longitudinal self-consistent forces can be
neglected.

• The beam is propagating at constant velocity vb along the propagation axis z.
• Electromagnetic self-forces are included.
• ~p = (px, py, pz), pz ∼ pb and px, py � pb, where pb = γmvb is the beam momentum.

It follows in particular that

β ≈ βb = vb/c, γ ≈ γb = (1 − β2

b )
−1/2. (12)

• The beam is thin: the transverse dimensions of the beam are small compared to
the characteristic longitudinal dimension.

The paraxial model can be written as

∂f

∂z
+

~v

vb
· ∇~xf +

q

γbmvb
(− 1

γ2
b

∇Φs + ~Ee + (~v, vb)
T × ~Be) · ∇~vf = 0 (13)

coupled with Poisson’s equation,

−∆~xΦ
s =

q

ε0

∫

R2

f(z, ~x,~v)d~v, (14)

where Φs is the self-consistent electric potential due to space charge; ~Ee and ~Be are
the external electric and magnetic fields, respectively; and vb is the reference beam
velocity.

Two numerical methods have been applied in 2P2V simulations. One is a semi-
Lagrangian method (SLM) on a structured grid in each 2D plane; the other is a
discontinuous Galerkin (DG) method on an unstructured grid in each 2D plane. The
methods are introduced in the following subsections. They both use the same time-
splitting scheme proposed by Cheng and Knorr [6]. Each time step has been divided
into three substeps: the first and third substeps are in physical space, and the second
substep is in velocity space. The detailed procedure follows.
. . . . . .

Do istep=1,nstep:
- Substep 1: Perform a half time step shift in the (x,y) plane: f ∗(~x,~v) = f(tn, ~x −

~v∆t/2, ~v)
- Compute the electric field at time tn+1/2 by substituting f ∗ in the Poisson’s

equation;
- Substep 2: Perform a full time step shift in the (vx, vy) plane: f ∗∗(~x,~v) = f ∗(~x,~v−

~E(tn+1/2, ~x)∆t);
- Substep 3: Perform a second half time step shift in the (x,y) plane: f(tn+1, ~x, ~v) =

f ∗∗(~x − ~v∆t/2, ~v);
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Fig. 2. Modal bases on a triangle (left) and triangular mesh in a circular domain (right).

Enddo
. . . . . .

On each two-dimensional space, the Vlasov equation transforms into a linear
transport equation in the 2D plane. Two solvers have been developed for the 4D
Vlasov equation. The first solver expands the distribution function f(x, y, vx, vy, t)
on a structured grid. The domain on each plane is a box. The bases and mesh used
are shown in the left and right side of Fig. 1. The semi-Lagrangian method was used
in 2P2V as in 1P1V. Instead of solving Poisson’s equation and interpolating in 1D,
however, the solution was done in 2D on structured quadrilaterals. Details can be
found in [33].

The second solver expands the distribution function f(x, y, vx, vy, t) on an un-
structured grid. The domain on each plane is a circle. The bases and mesh been used
are shown in the left and right side of Fig. 2. Using an unstructured grid can be more
efficient because the beam usually has local concentration. Instead of using the semi-
Lagrangian method, the discontinuous Galerkin method explained in Section 2.2.4
has been used. For the transport equation, researchers have successfully applied this
method to the transient Maxwell and Euler equations in 2D and 3D. Since the split
Vlasov equation on each 2D plane is a transport equation, we adopted a DG method
to solve the Vlasov equation on each 2D plane. Furthermore, during the time-step
iteration, Poisson’s equation must be solved on an unstructured grid. A DG method
called the internal penalty method was used to solve Poisson’s equation on the same
grid on the physical plane. Interested readers can find more details in [34].

2.2.3 Semi-Lagrangian Method

As shown on the left of Fig. 3, the semi-Lagrangian method consists of comput-
ing the distribution function at each grid point by following the characteristic curves
backward and interpolating the distribution function at the previous time step. Ac-
cording to Liouville’s theorem, the phase-space distribution function is constant along
the trajectories of the system. Therefore, the interpolation at the previous time step
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Fig. 3. Semi-Lagrangian method (left) and Shur complement method (right)

equals the function value at the present time step. In contrast to the Eulerian frame-
work, the semi-Lagrangian scheme allows the use of large time-steps without losing
stability. The limitations for stability are that trajectories should not cross and that
particles should not “overtake” one another. Therefore, the choice of time-step size
in the semi-Lagrangian scheme is limited only by numerical accuracy.

2.2.4 Discontinuous Galerkin Method

In 1973, Reed and Hill [23] introduced the first discontinuous Galerkin method
for hyperbolic equations. Since that time there has been active development of DG
methods for hyperbolic and nearly hyperbolic problems, resulting in a variety of meth-
ods. DG methods are locally conservative, stable, and high-order accurate methods.
Originally, the DG method was realized with finite-difference and finite-volume meth-
ods. Later, it was extended to finite-element, hp-finite element, and spectral element
methods. These make it easy to handle complex geometries, irregular meshes with
hanging nodes, and approximations that have polynomials of different degrees in
different elements. These properties have brought the DG method into many disci-
plines of scientific computing, such as computational fluid dynamics (especially for
compressible flows), computational electromagnetics, computational plasma, semi-
conductor device simulation, chemical transport, and flow in porous media, as well
as to a wide variety of problems such as Hamilton-Jacobi equations, elliptic problems,
elasticity, and Korteweg-deVries equations. More details can be found in [7–9,18].

In the literature, the DG method has been used only in up to three dimensions.
Since the Vlasov equation can involve higher dimensions, it brings new challenges to
the DG method. Based on our successful experience in using a time-splitting scheme
for solving the Vlasov equation directly [33], we have tried the DG method as a
substitute for the semi-Lagrangian method in each substep, which is advanced in 2D
phase spaces separately. Suppose that a 4D phase space ΩK is composed of the tensor
product of two 2D phase spaces, Ω1

K1 ×Ω2

K2 , and the total degrees of freedom in Ωi
Ki

is F i. Then the total degrees of freedom in ΩK is F 1 × F 2.

Substituting t for z in Equation (13), we can write the time-splitting scheme
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combined with the DG method as follows:

∂f(~x,~v, t)

∂t
+

1

2
∇~x · [~V (x, y)f(~x,~v, t)] = 0, (15)

∂f(~x,~v, t)

∂t
+ ∇~v · [~U(vx, vy)f(~x,~v, t)] = 0, (16)

∂f(~x,~v, t)

∂t
+

1

2
∇~x · [~V (x, y)f(~x,~v, t)] = 0. (17)

The velocity in physical and velocity spaces is

~V (x, y)=
~v

vb
=

(vx, vy)

vb
, (18)

~U(vx, vy) =
q

γbmvb

[− 1

γ2
b

∇φ(x, y) + ~E(x, y)]. (19)

Another challenge in applying the DG method to solve the Vlasov equation is
that the computer time increases as N2, where N is the total degrees of freedom in
physical and velocity spaces. Since in each subspace the transport equation is totally
decoupled, it is well suited for large-scale parallel computing. Therefore, a highly
scalable scheme could be developed, and the DG method matches this requirement,
offering the added promise of high efficiency. More details can be found in [34].

2.3 Methods for Solving Poisson’s Equation

Since the space charge effects are accounted for by solving Poisson’s equation,
several numerical methods have been adopted. Each has advantages in specific condi-
tions, explained separately in the following. Poisson’s equation is a standard second-
order, elliptic partial differential equation, which has been studied extensively by the
scientific computing world [16]. We briefly explain each method; details can be found
in relevant publications. The most common methods for solving Poisson’s equation,
such as the finite-difference method and finite-volume method, are not included in
this paper because they are available in most textbooks of scientific computing. The
methods presented below are mostly numerical methods with high-order accuracy.

2.3.1 Fourier Spectral Method (FSM)

The Fourier spectral method is the standard method for solving Poisson’s equa-
tion in a box region on a Cartesian coordinate system. More details can be found in

11



[5,15]. The potential has been expanded in Fourier series in all three directions. Either
periodic or Dirichlet boundary conditions can be applied in all three directions.

φ(x, y, z, t) =
M/2−1

∑

m=−M/2

P/2−1
∑

p=−P/2

N/2−1
∑

n=−N/2

φ̂(m, p, n, t)e−iαmxe−iβpye−iγnz (20)

Then Poisson’s equation can be expressed as follows.

f(x, y, z, t) = ∆φ(x, y, z, t) = ∇2φ(x, y, z, t)

=
M/2−1

∑

m=−M/2

P/2−1
∑

p=−P/2

N/2−1
∑

n=−N/2

f̂(m, p, n, t)e−iαmxe−iβpye−iγnz

= −
M/2−1

∑

m=−M/2

P/2−1
∑

p=−P/2

N/2−1
∑

n=−N/2

K(m, p, n)φ̂(m, p, n, t)e−iαmxe−iβpye−iγnz (21)

K(m, p, n) = α2m2 + β2p2 + γ2n2 (22)

From this it is easy to see that φ̂(m, p, n, t) = f̂(m, p, n, t)/K(m, p, n). Parallel
algorithms for this method are given in Section 3.4.1.

2.3.2 Fourier hp-Finite Element Method (Fhp-FEM)

Since most accelerating devices have round apertures, solving Poisson’s equation
in a cylindrical coordinate system (CYLCS) is more appropriate in this case. In
CYLCS, Poisson’s equation has the following form:

∇2φ(r, θ, z) =
∂2φ

∂r2
+

1

r

∂φ

∂r
+

1

r2

∂2φ

∂θ2
+

∂2φ

∂z2
= − ρ

ε0

, (23)

where φ is the electrostatic potential, ρ is the charge density, and ε0 is the permittivity
of the vacuum. The 3D mesh is shown on the left of Fig. 4. The 2D mesh in the
(r,θ) plane is shown on the right of Fig. 4. We use Gauss-Radau-Legendre quadrature
points [20] in the first element close to the center to avoid 1/r singularity. In this case,
there are four unequal elements in the radial direction. Each element has nine points,
and each pair of adjacent elements share the boundary points. Periodic boundary
conditions (BCs) have been applied in the longitudinal and circumferential directions,
and a natural BC has been applied in the center of the cylinder. A Dirichlet zero BC
has been applied at r = r0, where r0 is the radius of the cylinder.
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By transforming from the (r, θ, z) space to the (r, m, n) space through a Fourier
transform, we obtain

1

r

∂

∂r
(r

∂φ̃

∂r
) − m2

r2
φ̃ − n2φ̃ = − ρ̃

ε0

. (24)

This yields a linear system of equations

A · φ̂ = f̂ , (25)

where A is a (P +1)× (P +1) matrix generated by the left-hand side terms, and φ̂, f̂
are (P+1)-component vectors, where p,q=0,1,2,...,P. Equation (25) is solved directly
since it is in one dimension. The size of A is not very large. Different Fourier modes m
and n can be located on different processor to parallelize the solution. The procedure
is explained in the next section, and more details can be found in [32].

2.3.3 hp Finite Element Method (hp-FEM)

The finite-element method has originated in the 1940s. It was developed from
elastic and structural analysis for civil and aeronautical engineering. The accuracy of
FEM can be increased by using a larger mesh, called h-FEM. It can also be improved
by increasing the order of the bases, called p-FEM. The combination of these two
approaches, called hp-FEM, is an area in numerical methods that has attracted many
computational mathematicians [18,21,24,25].

The hp-FEM method has many advantages over popular, low-order methods in
many applications [11,13,18,20,26]. The main advantages of hp-FEM are its flexibility
in handling complex geometry and its high-order accuracy. Nearly all operations
and data are local, including the derivative, interpolation, integration, solution of
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Poisson’s equation, and transformation between physical and coefficient spaces. It
can use two types of bases: nodal or modal. Both modal and nodal hp-FEM have
been successfully applied to solve the Poisson and Vlasov equations. In our work, the
modal hp-FEM uses a structured mesh in 2D as shown on the left of Fig. 1, while the
nodal hp-FEM uses the unstructured mesh in 2D geometry as shown on the right of
Fig. 2.

With the Shur complement technique, the solution of a linear system A× x = b
can be divided into two parts for boundary and internal modes, as shown on the right
of Fig. 3. The boundary modes are solved iteratively by using a conjugate gradient
method. The internal modes in each element can then be solved directly. The discrete
system for the Poisson equation can be written as follows:
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where b and i correspond to boundary and interior variables and ub and ui can be
solved separately by the following equations.

(Abb − CbiA
−1

ii CT
bi)ub = fb − CbiA

−1

ii fi (26)

ui = A−1

ii (fi − CT
biub) (27)

More details can be found in [11,20].

Since the Vlasov solver on an unstructured grid is built on the DG framework,
it is better to solve Poisson’s equation with the DG method also. The method used
in DG framework is called the interior penalty method [2,12,28]; more details can be
found in [34].

3 Parallel Methods

In order to run on petascale supercomputers, the numerical methods explained
above must be parallelized. As in the preceding section, the parallel methods are
explained in three subsections. Since we have mainly used the IBM Blue Gene/P
supercomputer at Argonne National Laboratory to test the parallel methods, we
briefly introduce its structure and capability first.

3.1 BG/P Supercomputer

Argonne has two BG/P supercomputers: Surveyor and Intrepid. Surveyor has
one rack (4,096 cores); Intrepid has 40 racks (163,840 cores). Each Blue Gene/P
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rack contains 1,024 compute nodes. A compute node has four cores, each a 850 MHz
PowerPC 450 processor with a dual floating-point unit (“double hummer”). The
memory per node is 2 GB. There are 64 compute nodes per I/O node. An important
feature of BG/P is the fast communication network. It has a 3D torus network that
can achieve 5.1 GB/s per node. The peak performance of Intrepid is 557 teraflops,
and it has a total of 80 TB of memory. The speed of each computing node is not
very fast; but with the large number of computing nodes, BG/P supercomputers can
achieve a faster speed than other types of supercomputers. Currently, several BG/P-
type supercomputers are ranked in the Top500 list of fastest supercomputers on the
world.

For our parallelization work, we have used the MPI library on the BG/P super-
computers at Argonne. The IBM xlC compiler has been used for the compilation,
and both the BLAS and LAPACK libraries have been used for optimal numerical
computation. All these libraries are available on different supercomputers, including
clusters. Since our parallel methods are general, they can be used on almost any type
of supercomputer. We note, however, that the recently emerged GPU-based systems
have different software requirements; therefore, the implementation of our parallel
methods needs modification for GPUs; but the parallel methods themselves remain
the same as on a CPU-based system.

3.2 Parallel Method for PIC Software

Beam dynamics simulations involve two components: particle tracking (pusher)
and space charge (SC) calculation (field solver). We have successfully parallelized
our PIC-based beam dynamics code TRACK; the parallel version is called PTRACK
[30]. The parallel algorithm for PTRACK is shown in Fig. 5.

At the beginning of the calculation, the internally generated or read-in initial
particle distribution is equally distributed among all the processors. That is, each
processor has only part of the total particles. But each processor has information
about the full external fields for the beamline or accelerator element being simulated.
The SC grid is also defined on all the processors. Before every tracking step the
internal SC fields of the beam must be computed and combined with the external
fields. The first step in the calculation of SC fields is the particle charge deposition
on the nodes of the SC grid. This is done locally; that is, each processor deposits the
charges of particles that are located on it. At the end of this step, every processor will
have a partial SC distribution including only the charge of its particles. To calculate
the SC distribution of the whole beam, we sum the partial SC distributions on the
SC grid using the “MPI Allreduce” routine of the MPI library [23]. To use domain
decompositions of the Poisson solver, we subdivide the full SC grid into smaller-
scale SC grids using 1D, 2D, and 3D space decompositions. Each processor will have
a local SC grid containing only part of the SC data. FSM has been used for all
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Fig. 5. Parallel algorithm of PTRACK

the decompositions. The fast Fourier transform (FFT) is a global transformation.
Therefore, in order to perform the FFT in one direction, all data in that direction
should be collected on one processor. After the FFT, they are distributed back to
their original processors. After solving the Poisson equation, we have the solution
in the form of potential data distributed on the local grids of each processor. In
order to have all potentials on each processor, a second global communication using
“MPI Allreduce” brings the potential data from the local grids to the global grid to be
ready for the tracking part of the calculation. The complete procedure is summarized
in Fig. 5. PTRACK has been used mainly on the BG/P at Argonne. Documentation,
executable and examples are available upon request.

The domain decomposition method has been used for the parallelization of other
Poisson solvers, such as the Fourier hp-finite element method. More details can be
found in [30].

3.3 Parallel Method for Direct Vlasov Solvers

For 1P1V, which is equivalent to a 2D simulation, 1D domain decomposition
has been adopted in both the physical x and velocity vx space. Two MPI communi-
cators, comx and comv, have been generated for operations in different spaces. For
2P2V simulation using the structured grid, the parallel model performs 2D domain
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decompositions in both the physical (x, y) and velocity (vx, vy) planes; therefore, a
4D domain decomposition has been used, as shown on the left of Fig. 6. This makes it
easy to use a large number of processors and is particularly helpful for direct solution
of the Vlasov equation. Three splitting substeps are associated with the communica-
tors. This approach makes it possible to solve the Vlasov equation in high dimensions.
In these simulations, two more communicators, comxy and comvxvy, have been gen-
erated for operations in the different planes. The communicator comxy contains all
processors with the same (vx, vy) location, and comvxvy contains all processors with
the same (x, y) location. These two communicators are used for computing the beam
statistics. When using the unstructured grid, only two communicators can be cre-
ated, comxy and comvxvy, because it is impossible to distinguish x from y on the
(x, y) plane and vx from vy on the (vx, vy) plane. Details in each case can be found
in [33,34].

3.4 Parallel Methods for Poisson Solvers

Because of the global nature of Poisson’s equation, involving the whole charge
distribution to calculate an effective self-field created by all the particles in the beam,
its parallelization is the most challenging part in developing scalable algorithms for
beam dynamics simulations, especially when the grid is small and a large number
of processors are used. In this section, we briefly describe the parallel algorithms
developed with the domain decomposition method.

3.4.1 Parallel Method for FSM

Since FSM is the most popular method for solving Poisson’s equation, more work
has been devoted to this method. Three domain decomposition methods have been
implemented, as shown in Fig. 7. With the appropriate model, it is easy to use tens of
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Fig. 8. Parallel models for the Fourier hp-finite element method

thousands of processors with a relatively small grid for the space charge calculation.
For example, if the grid used for Poisson’s equation is 323, then the maximum number
of processors that can be used is 32 for the 1D decomposition model, 322 = 1, 024 for
the 2D decomposition model, and 323 = 32, 768 for the 3D decomposition model. If
the data is not located on one processor in any direction, a global MPI Alltoall must
be called to transfer the data to one processor. Another call is needed to transfer the
data back to the original processors. Good scaling has been obtained with a relatively
small grid for the space charge calculation; see [29–31].

3.4.2 Parallel Method for Fhp-FEM

For the Fhp-FEM in CYLCS, a 2D domain decomposition method has been
developed, as shown in Fig. 8. The model on the right has the benefit of solving the
1D linear system A×x = b on each processor, as the equations are totally decoupled.
The model on the left must solve the boundary modes first, then the internal modes
in each element in the r direction. Since the element number in the r direction is not
very large, this model is efficient and is being used for BDS. One can also develop
a 3D domain decomposition approach, as was done for FSM, which can use a large
number of processors. Details can be found in [33].
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3.4.3 Parallel Method for hp-FEM

Parallel Poisson solvers using hp-FEM are achieved by using the Shur comple-
ment technique, shown on the right of Fig. 3. The boundary mode, Equation (26),
has been solved by using an iterative conjugate gradient method, whereas the inter-
nal mode of each element, Equation (27), has been solved by the direct method. The
mesh should be partitioned appropriately so that all processors have approximately
the same numbers of elements to ensure load balance. In order to speed the con-
jugate gradient method, an efficient preconditioner can be used. For the multigrid
technique, both the coarse and fine meshes use the same mesh partition. This makes
it convenient to perform prolongation and restriction operations on each element. A
good mesh partition is to minimize the modes located on the interfaces of different
processors, as this will reduce the communication cost during global operations. More
details can be found in [34].

4 Comparison and Discussion

In this section we compare the performance of the numerical methods presented
in the paper.

4.1 PIC vs. the Direct Vlasov Method

The common point of PIC and the direct Vlasov method (DVM) is that they both
need to solve the Poisson equation during each time step. PIC and DVM have many
differences, however. PIC uses a Lagrangian approach, whereas DVM uses an Euler
approach. Using a Lagrangian approach means that the macroparticles are traced
during acceleration. Using an Euler approach means that the probability function
in phase space is studied instead. As shown in Fig. 9, PIC uses macroparticles to
represent a real beam, while DVM uses fixed grid points. The left image in Fig.
9 shows a beam bunch of 108 particles in 3D physical space. The middle and right
images in Fig. 9 show that each point in the 3D physical space has a 3D velocity space
associated with it. This makes DVM high dimensional, while in the PIC method a
single macroparticle has a well-defined space and velocity coordinates. In the PIC
method, macroparticles represent the same number of real beam particles, whereas
in DVM the distribution function has different values on the grid points. Since PIC
uses macroparticles, the statistics of the beam are obtained on particles, whereas for
DVM they are obtained on grid points. Moreover, PIC is at most in 3D, whereas
DVM can be in 6D.

To better understand their relation, we can shrink the velocity space in DVM to
just one point and transform the DVM grid in physical space to exactly match the
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Fig. 9. Phase space for PIC (left) and Vlasov (right)

beam bunch. The DVM now translates to the PIC method: the DVM distribution
function value at a grid point is equal to the particle numbers represented by the
macroparticle located at that position.

Another difference between PIC and DVM is that DVM solves the transport
equation in the velocity space, whereas PIC applies a force kick to represent the
integration in the velocity space. This approach greatly simplifies the method and
makes PIC easy to implement.

Since PIC uses more simplification and macroparticles to represent the same
number of real particles, the method is difficult to use to capture the beam halo,
where the particle number is less than the number represented by one macroparticle.
DVM complements this method by using an Euler approach in which the distribution
function in phase space is easy to use to represent the halo. On the other hand, large
derivative and interpolation errors prohibit the use of DVM in real applications.
More efficient numerical methods are needed that can simulate the real physics more
accurately and efficiently. We plan to investigate this issue further.

4.2 Semi-Lagrangian vs. Discontinuous Galerkin Method

The semi-Lagrangian and discontinuous Galerkin methods are both efficient
methods for time integration. Both methods have strong stability. While the DG
method has stronger stability than does the continuous Galerkin method, the DG
method has a strict limitation on the time-step size. SLM, on the other hand, is less
limited and therefore, with the appropriate choice of the time-step size, can be more
stable than the DG method. Since a beam is a concentrated bunch of particles, the
distribution function can have sharp structures, making the errors of interpolation
and derivation much larger than in usual plasma simulations. The greatest challenge
comes from these large operator errors. In practice, SLM is easier to develop than
the DG method. For parallelization, since the DG method has completely indepen-
dent bases on each element, the communication is less except for the DG Poisson
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solver. SLM, on the other hand, has to redistribute all backtracing points on differ-
ent processors and thus is more complicated than the DG method. SLM also has a
load-balancing problem because only a small portion of the phase space has a prob-
ability function larger than some value. Depending on the mesh partition, usually
most backtracing points are located on some processors, an approach that wastes
computing time. The DG method has a more balanced computing load because all
processors have an equal amount of work to be done.

4.3 Poisson Solvers

We have presented several numerical methods for solving Poisson’s equation.
Among these, FSM is the most popular and efficient since the FFT algorithm can be
used and since public FFT libraries are readily available. The drawback of FSM is
the global characteristics of the Fourier transformation, which require that the data
in one direction locate on one processor to complete the FFT. The large ratio of
communication cost over the FFT cost makes the parallel efficiency low on a large
number of processors. Since the total time is small compared to other time with PIC
and direct Vlasov solvers, however, the overall parallel efficiency is still good. This
is true of all three parallel methods developed for FSM, especially the one using 3D
domain decomposition, which can be run efficiently on tens of thousands of processors.

Fhp-FEM is designed for CYLCS, which gives a more accurate solution for a
cylindrical geometry because the boundary condition is more precisely defined on a
cylinder wall. The number of processors used in Fhp-FEM usually is less than that
of FSM, however.

Since hp-FEM is used in the radial direction, it, too, is limited in the number of
processors that can be used.

High-order accuracy can be achieved by hp-FEM Poisson solvers when using
high-order polynomials. Similar to FSM, however, there is some inherent restriction
on scalability. Since the modes on interface between elements are solved globally
through the conjugate gradient method, the parallel efficiency usually becomes worse
when the number of processors increases. The parallel efficiency usually becomes
better as the polynomial order increases for both the conjugate gradient and dis-
continuous Galerkin methods. The convergence of the conjugate gradient method is
usually better than that of the DG method. Using an unstructured grid makes it easy
to handle complex geometries.

The effectiveness of these Poisson solvers depends on the different configuration
in which it is used. The solver should be chosen based on the geometry and boundary
conditions.
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4.4 Structured vs. Unstructured Meshes

Unstructured mesh is more appropriate for complex geometries; finer mesh can
be generated in the central part of the beam. Both structured and unstructured
meshes can apply a conjugate gradient or discontinuous Galerkin method, but the
unstructured mesh is more complicated to develop. One significant difference between
structured and unstructured meshes for the 2P2V Vlasov solvers is that we don’t
have access to the same statistical quantities. As explained in the previous section
for parallel models for Vlasov solvers, with an unstructured mesh one cannot separate
the x and y directions. There is no way to find all (x, vx) points for a given (y, vy)
point. Similarly, there is no way to find all (y, vy) points for a given (x, vx) point.
Therefore, the statistical quantities XX ′

rms and Y Y ′

rms cannot be calculated, whereas
the statistical quantities Xrms, Yrms, X ′

rms, and Y ′

rms can be obtained on both meshes.
The definitions of these statistics can be found in [33].

5 Summary

We have briefly described numerical and parallel methods developed and used in
our research for large-scale beam dynamics simulations during the past five years at
Argonne National Laboratory. We hope these descriptions will be helpful to other re-
searchers in accelerator simulations. Readers should consult the cited journal articles
for more details.

The numerical methods have been discussed in three categories: PIC, direct
Vlasov, and Poisson solvers. Parallel methods for all of them have also been de-
scribed; these are designed to take advantage of petascale supercomputers. The par-
allel methods have been implemented in software packages and successfully run on
tens of thousands of processors of the IBM Blue Gene/P at the Argonne Leadership
Computing Facility. The parallel PIC-based beam dynamics code PTRACK has been
used for large-scale beam dynamic optimization and real accelerator simulations. The
parallel direct Vlasov solvers have been developed for both 1P1V and 2P2V simu-
lations and have provided more detailed information on the physics, such as halo
generation and filamentation in low dimension and with smooth initial distribution
functions. Because of large derivation and interpolation errors, however, they are dif-
ficult to use in real accelerator simulations. More efficient numerical methods need
to be developed to simulate complex beam dynamics more accurately.

Necessary for the success of PIC and direct Vlasov methods, several numerical
methods for solving Poisson’s equation in different situations have been presented and
compared. They are critical to performing large-scale beam dynamics simulations.

Overall, these numerical and parallel methods serve as a basis for BDS, and
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we expect that they will be applied to broader areas in the future. We note that the
methods discussed in this paper represent only a selection of our research at Argonne.
We also note that this work is ongoing. We expect to develop and use more efficient
numerical methods and to optimize the current techniques, in order to improve beam
dynamics simulations.
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